Int. J. Solids Structures, 1967, Vol. 3, pp.927 to 933. Pergamon Press Ltd. Printed in Great Britain

THE SCHROEDINGER EQUATION AND
MOMENTUM TRANSFER IN CRYSTALS
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Abstract—The differential equation recently proposed by Fitzgerald in connection with momentum transfer and
non-elastic deformation in crystalline solids is shown to be an alternative form of the time-dependent Schroedinger
equation which applies generally to periodic structures such as crystals. The physical significance of the momentum
transfer equation is not clear when it is presented solely as a form of the Schroedinger equation and hence the
new formulation adds little to an understanding of the momentum transfer process in crystal lattices. On the
other hand, some increased understanding of the Schroedinger equation itself appears to be possible as a result
of the ideas discussed here.

INTRODUCTION

FiTzGERALD [1, 2] has recently described an alternate interpretation of the wave or wave
function, , which is to be associated with moving particles according to the de Broglie
relation. A real-property (momentum) wave, ¥, = mv,, was postulated to exist in addition
to (or in place of ) the Born probability waves of orthodox wave mechanics, and a differential
equation for momentum transfer in periodic structures was adduced as an alternative to the
Schroedinger equation. Fitzgerald’s equation has the form

dmv,) ik
at 2d?

where % is Planck’s constant/2x, v, is the velocity of a general nth mass (atom) as a result of
a particle momentum wave propagating in a lattice with atom masses m, in a direction with
spacing, d. From this equation and its solutions a number of macroscopic mechanical
properties of crystalline solids can be successfully described and some mechanical quantities
can be calculated directly from fundamental atomic constants. These include transition
velocities observed in impact experiments, the threshold velocity for cratering or phonon
fission in crystals, non-elastic resonance frequencies, characteristic stresses associated with
plastic deformation, and coefficients of sliding friction [2]. The equation thus has consider-
able practical value, but like all postulated relationships, its existence is justified only by its
success.

The purpose of this article is to demonstrate a close connection between Fitzgerald’s
postulated momentum transfer equation for crystals and Schroedinger’s (also postulated)
time dependent wave equation. In fact, the Fitzgerald equation can be considered to be an
alternative form of the Schroedinger equation which applies to non-continuous, periodic
structures such as crystals. In order to show this, however, it is necessary to retain Fitz-
gerald’s concept that a real-property wave (i.e., a momentum wave) can be associated with
moving particles. Neither the de Broglie relation nor the Schroedinger equation in them-
selves define or in any way determine the exact nature of the waves to be associated with

* Present address: State University of New York (at Stony Brook).

(Vp+1+ 0,1 —20,) (N

927



928 Epwin R. FITZGERALD and James Tasi

moving particles [2]. The probability interpretation of ¢ was advanced separately by
Born [3] and, of course, is the currently accepted view, in spite of conceptual difficulties
in connection with particle diffraction by crystals [2] and various philosophical objections
[4).

In considering a momentum wave to be associated with moving particles it is not
necessary to exclude the coexistence of Born probability waves. Rather, it is simply more
convenient in certain circumstances to consider only the momentum waves. It may well
turn out that in other instances it is useful or even necessary to consider both types of
waves.

1. THE SCHROEDINGER EQUATION FOR AN ATOM IN A
ONE-DIMENSIONAL LATTICE

Consider a one-dimensional (row) lattice of point masses, m, and regular spacing, 4,
as shown in Fig. 1. The point masses, m, are further assumed to be in equilibrium at the
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FiGg. 1. Schematic drawing of a one-dimensional (row) lattice of equal point masses. Solid circles

represent equilibrium positions of masses; the dashed circles, the positions of deflected or displaced

masses (atoms). In the text a velocity interaction and momentum transfer between adjoining masses is
discussed in terms of the Schroedinger equation.

lattice points as a result of the existence of a periodic potential energy distribution V(x)
such that

V(x) = V(x+d) (2)

throughout the lattice. The absolute value of the potential energy is arbitrary and is here
selected so that the potential is zero at the lattice points n—1, n, n+1 etc. That is,

wha=ha=V=V,=Vi...=0 (3)

where V, = V{x,), etc.
The general time-dependent Schroedinger equation for one of the masses (atoms) of
the row lattice of Fig. 1 has the well-known form [5]
3 2m 2im Y
V¥ = 4
xR VT @
where V in this case is the periodic potential given by equation (2). If Y is a continuous
function of x, then the second differential operator has its common meaning that
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since ¥ is defined everywhere in the interval Ax. However, if  is to be a real-property of
the type that can be defined in the vicinity of a mass point in a lattice but not elsewhere 1, 2],
then a different meaning must be attached to the second derivative operator 8%y/ox2.
Fortunately an appropriate interpretation has already been provided by Leibnitz as
discussed, for example, by Courant [6].

According to Leibnitz the second derivative can be thought of as the limit of the **second
difference quotient” as follows. We consider values of the function ¢ at three points,
x, x+a, x+ 2a and then take the second difference quotient as

Vo=, -y 1
5(*}7;~———a~~*) = y(‘f/;ﬁ“w“z‘h) (6)

where Y = ¥(x); ¥, = Y(x+a): ¥, = P(x+2a)
Hence if a = Ax, ,— ¥, = Ay, and ¥, —¢ = Ay then the numerator in equation (6)
becomes

Ay, —AY = AAY) = A% (7
while the denominator is (Ax)?, ie. the square of Ax. For situations where it may not be
possible to make Ax arbitrarily small, it is worthwhile to fashion a variation of Leibnitz’s
second difference quotient by considering values of the function ¥ at x and on either side
of x; ie, at x—a, x, and x+a. Then the second difference quotient may be written as

o=y Y=y

a

a a

= Gty -2 ®

where ¥ = Y(x); ¥ _ = Y(x—a); ¥, = Y(x+a). In this case the second difference quotient
will yield a better “mean” value for #%y/6x* at x under circumstances where a = Ax
becomes very smalt but does not actually approach zero.

In the row lattice of Fig. 1 we have just such a case where a cannot be arbitrarily small,
but has the limiting value d. In this case, therefore, an appropriate meaning for 8%y/dx? at
a general nth mass (atom) of the lattice becomes

d? Ay, 1
L VRO A ©)

where ¥, = (x,), etc. and d is the lattice spacing. With the substitution of equation (9)
for the second partial derivative, the Schroedinger equation for a real-property wave, ¥,,,
associated with a general nth mass of the row lattice of Fig. | takes the form,

E(¢n+l+$n—l_2wn)“?nwn+—ﬁ_ ot =0
oy, ik i
—g—;— = %(wwl +l//n—1 “‘2‘[’")“‘;1 V;llﬁn (10)

With the further substitution of linear momentum for Y, as proposed by Fitzgerald,
equation (10) becomes

o(mv, ih
Y ) = Eai(vuﬂ +0,-1—2v,) 1y
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where y,, = mv, and ¥, = 0as specified in equation (3). Hence the form of periodic potential
present in the lattice does not have any effect on momentum wave propagation in the lattice.
The product Vi is, in fact zero everywhere in the lattice for real-property waves. That is,
values of ¢ exist only in the vicinity of the mass points where V is zero; where V is not zero,
W is zero.

Equation (11) can be considered as the Schroedinger equation for an atom in a row
lattice. It is seen to be identical with Fitzgerald’s differential equation for momentum
transfer which was developed along entirely different lines. In order to put the Schroedinger
equation into the form given by equation (11) it must be emphasized that, first, the usual
meaning of the second derivative operator was extended to allow its use in a discontinuous
(but regular) medium such as a crystal lattice ; and, second, that particle waves were taken
to be momentum waves instead of the usual probability waves of contemporary wave
mechanics.

2. MOMENTUM TRANSFER IN A CRYSTAL LATTICE

In order to understand the physical significance of equation (11) and its relation to
momentum transfer in a lattice it is necessary to examine Fitzgerald’'s [1, 2] original methods
for obtaining this equation. In the first place, the equation follows if an interaction or force
between masses in a lattice is postulated in which the magnitude of the force depends on
the relative velocities of the masses. That is, if we consider a general nth mass of the row
lattice of Fig. 1, we postulate a force f, on the mass given by

_dlmoy
==

j;'l —KF(I)“"'U"._I}—KP(U”“'U,,+ 1) {12)

where v, is the velocity of the nth mass, etc. and K, is some type of velocity interaction
constant. This equation was suggested [1, 2] by analogy with the situation for elastic inter-
action forces between atoms in a lattice. For elastic interactions the force on a general nth
mass (for nearest neighbors interactions only) depends on the relative displacement from
equilibrium of the masses, viz.,

d*x,

f":maxz

= _Ke(xn_‘xn—l)_Ke(xn"xna»l) (13}

where X, is the displacement from equilibrium of the nth mass, etc,, and K, is an elastic
interaction constant which depends on the periodic potential function V(x).

A second basis for equation (12) arises if we consider that some type of momentum transfer
process exists in the lattice for which the rate of momentum transfer depends on the velocity
differences between neighboring masses. In this case we write equation (12} in the form

6(mv,!)

ot = Kp(vn—lﬂvn)_Kp(vn—Un+1) (12')



The Schroedinger equation and momentum transfer in crystals 931

and for momentum transfer from left to right in the row lattice of Fig. 1 we note that

o(mu,) represents the net time rate of change
ot of momentum at lattice point n.
K, (v, 1, is the rate of momentum transfer from

point n—1 to point n.

K, (v,~v,y) is the rate of momentum transfer from
point n to point n+1.

K is the momentum transfer constant for

the lattice.

4

Equation (12') in this view simply represents a continuity equation for momentum flow
or transfer in the lattice, i.e., the physical basis for the equation is a statement of conserva-
tion of momentum between the three interacting masses in the lattice.

So far nothing can be said about the exact nature of the possibly complex momentum
transfer constant K ,. However it is possible to write a wave solution [1, 2] for v, in equations
(12 or 12') of the form

v, = Be—i(2xvpx‘knd) (14)

where k = 2n/A is the wave vector, d is the lattice spacing, B is a constant, and the frequency
v, is given by
—i2K, . ,kd
y, = egin2 84 (15)

r m 2

Then if we associate a momentum wave (y = mv) with a particle, we expect that in the limit
as k — 0 (or 1 — oo) the lattice of Fig. 1 should act as a field-free region to the wave.

That is, the closely spaced periodic variation of potential in the lattice cannot have any
effect on a wave of very large wavelength. Thus, as shown by Fitzgerald [1, 2], we find that
in the limit as k — 0 the expression for the frequency, v,, of a particle momentum wave in a
lattice (equation 15) must reduce to that for a free particle,

sin? — = ——k? (16)

where hk?/4nm is the free-particle frequency obtained from the de Broglie relation and by
setting hv = mv?/2.
At small values of k the sine can be replaced by its argument in equation (16}, so we have

K, = ih/2d>. (1n

Hence by this method a value for K, is determined by the physical boundary condition
that at long wavelengths (small k) the variation of v, with k in a lattice must be the same as
that for a free particle. Equations (12 and 12') thus are identical to equation (11) obtained
from the Schroedinger equation.
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CONCLUSIONS

It is possible to obtain Fitzgerald’s differential equation for momentum transfer in a
row lattice from the time-dependent Schroedinger equation for an atom of mass, m in the
lattice. However, the physical significance of the equation {repeated below)

e, _ ih
ot 242

is not clear when it is presented as a form of the Schroedinger equation. In particular, the
term i%/2d* has no obvious meaning. On the other hand, when this same equation is
adduced by Fitzgerald’s original methods [1, 2] several physical interpretations of ih/2d?
are immediately available; first, as a velocity interaction constant giving the relation
between the force on a general nth mass of the lattice and the relative velocities of its nearest
neighbors; second, as a momentum transfer constant for the lattice. In the latter case the
equation can be put into a form where it becomes simply a statement of conservation of
linear momentum between three interacting masses in the lattice. In this connection the
assumption is made that momentum transfer can occur between equal masses only if their
velocities differ.

The formulation of the momentum transfer equation from the Schroedinger equation
thus adds little to an understanding of the momentum transfer process in a crystal lattice.
On the other hand, there is a strong possibility that some increased understanding of the
Schroedinger equation itself can be gained as a result of the formulation. For example,
suppose that we are not considering a mass{atom)in a regular lattice with periodic potential
V(x) such that the term Vi is zero. Then the Schroedinger equation retains its usual form
which can be written as

(vn+1+un—1_2vn) (]])

o ih ot i
FoZ vy, (18)

o 2méax?t ok

Now the question is, can a real-property such as the momentum (mv) of the mass be generally
substituted for ¥? The answer to this question must be negative since such a real property
can be defined only in the vicinity of the mass, m, and not elsewhere. Hence  in this case
can not be continuous and ¢%/éx? has no meaning. (For a regular lattice of spacing d we
were able to find a reasonable special meaning for é%y/0x?, but this can not be done in
general). We can, however, suggest that a velocity field, «, can be defined such that P = ma.
Then the velocity field will be continuous in space even though the momentum, P, (because
of the discrete location of masses) is not. Hence the “*Schroedinger Equation™ for such a
velocity field can be written as:

‘o ih &
o amad " (19)
and the space dependence of »(x} determined for a given V(x}, etc.

Further discussion of such “*velocity fields”” and other aspects of a possible reinterpreta-
tion of the Schroedinger equation will be given elsewhere.
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Résumé—L’équation différentielle proposée récemment par Fitzgerald relativement au transfert d’'une quantité
de mouvement et a la déformation non élastique dans des solides cristallins est présentée comme étant une forme
alternative de I’équation dépendant du temps de Schroedinger qui s’applique généralement a des structures
périodiques telles que des cristaux. La signification physique de ’équation du transfert d’une quantité de mouve-
ment n’est pas claire lorqu’elle est présentée uniquement comme une forme de I’équation de Schroedinger et par
suite la nouvelle formulation aide peu 4 comprendre le processus du transfert de la quantité de mouvement dans
des treillis cristallins. D’autre part, une compréhension quelque peu accrue de I’équation de Schroedinger elle-
méme parait possible résultant des idées qui viennent d'étre discutées.

Zusammenfassung—Die Differentialgleichung die kiirzlich von Fitzgerald im Zusammenhang mit Impuls-
Ubertragung sowie nichtelastischer Verformung kristalliner Festkdrper vorgeschlagen wurde; ist wie gezeigt
wird eine Abart der zeitabhidngigen Schrodinger’schen Gleichung die allgemein auf periodische Formen wie
Krystalle angewandt werden kann. Die physikalische Bedeutung der Impulsiibertragungs-Gleichung ist nicht
klar wenn sie einfach als Form der Schrédinger’schen Gleichung gegeben wird, daher bietet die neue Form
nicht viel zur Erklarung des Impulsiibertragungs-Vorganges in Kristallgittern. Andrerseits scheint es, dass die
Schrddinger’sche Gleichung selbst als Resultat der Diskussionen jetzt besser verstanden wird.

AbGcrpakt—OKa3biBaeTcs, 4To aubdepeHunanbHOe ypaBHEHHME, BbIBENEHHOE HefaBHO PUTIIKEPATIOM
¥ OTHOCsIIEECS K BEKTOPY Mepenady UMIYNbca M HEYNpyroi gedopMauuM B KPUCTAJUIMYECKMX TBEPIBIX
TeNnax, ABNSETCS OPYTHM BBIDOXXEHHEM 3aBHCALLETO OT BpeMeHu ypasHeHus LlIpeauurepa, koTopoe Boo6iue
TOBOPS, IPUTOJHO IUISl UCCIEAOBAHMSA TAKMX NIEPHOANYECKHX CTPYKTDPY KakK KpPHCTAJUIbI. PU3HYECKHi CMbICT
YpaBHEHUA BEKTOpA INEpeJadyd HMITYJbCa HEACEH B CJIyvae, KOrJa OHO IPEACTABIEHO TOJLKO B BUAE
ypaBHenus lllpeaunrepa. CnenoBatenbHo HoBas (GOPMYJMPOBKA MPUBOAMT K HEKOTOPOMY BbIACHEHHIO
KapTHHbI BIKMOpE Mepelayd MMITYJIbca B KPUCTAJUIMYECKHX perueHusx. C Apyroi CTopoHbi, uieum obcy-
JKNaeMble B HACTOSLIEH CTaThe MOMAraroT Jiyylle IOHATH CMBICT ypaBueHus Llipenunrepa.



